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SIGNIFICANCE AND EXPLANATION
We consider the steady two-dimensional flow under gravity of water from
one reservoir (on the left) to a lower reservoir (on the right) through a
porous rectangular isotropic homogeneous dam with impervious bottom.
Because of gravity the water does not flow through the entire dam and the dam :
is dry near its upper right corner. The interface separating the dry and
wet regions of the dam is a free boundary. Recently, Friedman and Jenkins
have proved that the free boundary is convex. We give a different proof

which uses only the maximum principle and its generalizations.
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A PROOF OF THE CONVEXITY OF THE FREE BOUNDARY FOR POROUS FLOW THROUGH
A RECTANGULAR DAM USING THE MAXIMUM PRINCIPLE
L]
C. W. Cryer

1. The Dam Problem

We consider the following Dam Problem.

a porous rectangular isotropic homogeneous dam ABCF with impervious bottom BC of

length L from a reservoir of height H to a reservoir of height h

The water-air interface AE is a free boundary which we denote by TI.
A= (0,H) F= (L,H)
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B= (0,0) C=(L,0)

Figure 1.1: Flow through a rectangular dam.

The mathematical problem is as follows (Bear (1972), Baiocchi [(1972],

Baiocchi and Capelo [1978]):

Find functions ¢(x) (the height of the free boundary) and u(x,y) (the

hydraulic head) such that (from the equation of continuity and Darcy's law):

Computer Sciences Department and Mathematics Research Center,

University of
Wisconsin-Madison, Madison, WI 53706,

Sponsored by the National Science Foundation under Grant No. MC§77-26732. Support

facilities provided by the United States Army under Contract No. DAAG29=75-C=0024.

Water flows steadily under gravity through

(see Figure 1.1).




dav( d u) = 2 o + L = u * = V2u = 0 in @
wv(grad u 3 |ox ay lay 4 vy ' '

together with the boundary condition=,

u = H, on AB, (interface with water at rest) ,
Ju % i ’
> = 0, on BC, (impervious boundary) ,
u=h, on €D, (interface with water at rest) ,
u =y, on DE, (interface with air) ,
u =y, on FEA, (interface with air) ,
du :
=0, on EA, (streamline)
an
Here, 1 1s the (unknown) domain,

Q= {(x,y) :t 0 <y<wp(x), 0<x<L},

R} ¥ £ g 3 s
and In denotes the unit outward normal derivative. The physical significance of

u=y + p/pg ,

where g 1is the acceleration due to gravity, p is the fluid pressure, and p is
fluid density.

The dam problem is a well-known problem in the theory of porous flow. Cryer [1
p. 54] summarizes the numerous numerical solutions. There are also three analytical
solutions involving elliptic integrals: the first is due to Davison [1932, 1936,
1936a}; the second is due to Hamel [1934) and is described by Muskat [1937, p. 303]
and Bear [1972, p. 398); the third is due to Polubarinova-Kochina [1962, p. 284)
(concerning misprints see Cryer [1976, p. 54]). Although these analytical solutions
are rather complicated, they can, and have, been evaluated numerically.

Despite the fact that the analytical solution of the dam problem is known, the
problem is still frequently considered in the literature because it serves as a usef
model problem for porous fiow free boundary problems. In a pioneering paper,

Baiocchi [1972] reformulated the problem as a variational inequality for the functio

(1.1)

(1.2)

(1.3)

(1.4)
(1.5)

(1.6)

(1.7)

(1.8)
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(1.9)

the
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¥ (x)
wix,y) = [ [u(x,t) - tldt , (1.10)
y

and derived many properties of w. Further properties of w and u =y - w’ have
been obtained by Caffarelli [to appear], Friedman (1976}, Jensen [1977], and Friedman
and Jensen [1977].  Aitchison [1972] gives an expansion for the solution near the separa-
tion point E, and Aitchison [1977) gives numerical solutions.

Recently, Friedman and Jensen [1977) have proved that I' is convex under the
following assumptions (which had previously been proved in the above-mentioned work of

Friedman, Jensen, and Caffarelli):

ue o ncdm (1.11)
v € ClOo,L) N Cz(O.L) . (1.12)
¥ is strictly monotone decreasing for 0 < x < L , (1.13)
uy is bounded on Q . (1.14)

Making the same assumptions we give a different proof of convexity which uses only the
maximum principle and its generalizations. Some preliminary results of general appli-
cability are given in Section 2, and are then applied to the case in hand in Section 3.

The basic ideas in Section 3 have been known to us for almost twenty years and were
originally motivated by proofs of convexity for fluid dynamics free boundary problems
(Birkhoff and Zarantonello (1957, p. 84]), Gilbarg [1960, p. 373]). Since the approach
is effective in many fluid mechanics free boundary problems we hope that the same will
be true for porous flow free boundary problems.

The present paper illustrates the power of the maximum principle as a tool for
analyzing free boundary problems. It is appropriate to mention that the maximum
principle was probably first applied to the dam problem by Davison [1936] and Shaw
and Southwcll [1941]. Some additional references to the application of the maximum

principle to free boundary problems are given by Cryer [1977, Section I1.13].
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2. Preliminary Results on the Maximum Principle and Differential Geometry

We will require several versions of the maximum principle tor a real

u e COD which 1s harmonic 1n a bounded domain & with boundary

2« X + 1y - plane. We assume that u 18 continuous in

mber of ints sasenl. @ 3
numbe point zl,x2 = o

The Hopt Prianciple (Protter and Weinberger [196¢7, v. 651, Gilbarg and Trudinger [1977,

P. 33)): Let wul(z) <M in 2, and u(zu) = M at a point

M. Let (1) u be continuous at 2, and (11) there exist a ball

Then the outer normal derivative of u at 2, if 1t exists,

0

Ju
B A > 0
n (20) [+ [

The Maximum Principle states that if wu e C() and u

in 2. In the present context, this principle is not adequate because we sometimes

consider harmonic functions which are possibly not continuous at the boundary points

except perhaps at a finite

z

€

0

|

au

.
o,

BRCJ

y
)

<M on

2 = A, 2z, D, and 2z, = E (Figure 1.1). We will say that

1 2 3

Generalized Maximum Principle if
uiz) <N, ze€ 3 =z Nz, 1
implies
ufz) <N in Q.

If v(l) 1s harmonic in the unit circle D and v 18 continuous on D except

at L = 1, it is not necessarily true that v satisfies the Generalized Maximum

Principle as is shown by the following examples.

i

u

i8 1 & 1 - -2)
v(L) = v(re ) = v(r,0) = Real[l = Z) W e (l 0 .

1 %2 =32 co8 § :

18 a function which is defined on the unit circle D and v = 0 on 3D except at
the point & = +1, but wv(r,0) » 4« as r > 1, j
3
3

-3~
4
o i s i s ST adia

satisfies the v

m ,

in the complex .

the boundary of
! with a_ ¢ oB.
Q

satisfies

RIN

function

then u < M

e

(2.1)




&v....._. S —— ST . — — N

Al Al
- L e\ 2r - r )sin 8
viz) = vir,0) = Imag|+ :mfi - *—~—«i%~«~~~L~~‘—~">.
» 1+ % = 2r cos 0)
satisfies v(r,8) » 0 as r = 1 for all a. 0]

In order for the Generalized Maximum Principle to apply, u must satisty some
boundedness condition. In particular, it is known (Goluzin [1969, p. 267]) that it u
is bounded above in 2 then u  satisfies the Generalized Maximum Principle. The
following lemma gives another condition.

Let v be the harmonic conjugate of u in 8. (v 1is well-defined and single-
valued since, by assumption, & 1is a domain and hence simply connected.) Let du be
a rectifiable closed Jordan curve. If |vl < Hv in & for some constant Nv then

u satisfies the Generalized Maximum Principle.
Proof: Let 2 = (L) denote the conformal mapping of the unit disk D = {{ : }i, <2

in the L-plane onto . The functions u(z) and v(z) are harmonic conjugates in 1,
and so the functions u(w(Z)) and viw(d)) are harmonic conjugates in D,

We recall (Goluzain (1969, p. 385}) that the Hardy-lebesque space h consists of

A
the class of tunctions ¢ defined on D, which are harmonic on D, and which satisty
an

[ |¢(r.ﬂ)l2d0 <m

Q
for some constant m and all v € (0,1),
Since v 18 bounded, wv(w(i)) € h:: hence, by the Riesz theorem, u(wii)) ¢ h:
(Goluzin (1969, p. 3921).

Let ¢(r,®) = (L) = ulw()). Since & € h, the boundary values ¢(1,8) are {

detined almost everywhere and Poisson's formula holds (Goluzin [196Y, p. 391, Theorem 3],

{
Rudin {1966, p. 232]); that is,

i
1 an ) ]

) I
d(r,0) = T f B e e e 3 a0 . |
0 1 = 2r cosd + ¢ |
!
tet u satisfy (2.1). Since 3 is a rvectifiable Jordan curve, the mapping w E

associates sets of measure zero on &) with sets of measure zero on D (Goluain (1N,

P. 420, Theovem 2). Thus IO(I.O\! <M oa.se. on D, Remembering that the weight

wBe

sl




|
{
4
',.’

function an Polsson's formula 18 non=negative, it follows from Poisson's formula

[ above that ¢ N o on D, {
i Remark 2.2
1 It u and v are harmonmic conjudates and v 18 bounded then u  tneed not be

bounded as shown by the example
U A A= 3 intx + i) . U
Purther comments on the Generalized Maximum Principle will be found in the appendix.
In the dam problem we are aiven the values of u  and u,. on . The following

lemma summarizes the relationships between the derivatives of a function on a curve,

.Y

The lemma differs fram the usual Frehet formulas (Eisenhart [1940, P+ 2%)) in that

the curvature « may be either positive ov negative,

Lemma 2.2
Let the boundary 1 of 8 be defined parametvically by x = {(s), y = n(s),

\

where = denotes arc length alona A0 in the positive direction so that 18 to the

left of RN (Figure 2.1},

tet « = d@ ds ~ & Qenote the signed curvature, =0 that 1 38 positive than
is convex., Let t Dbe the unit tangent, and n the unit cutward normal., Then

t - n‘.*,\ = (+&,¥n)

n* (neng) = (4n,=8) ,
1 2

S\ ey on

+ AN = Q

L

foee

-

1
—
7=
P

N
K = fn « §n

& o= -xn, n o= el
dt dn
-— " -Rh - " Rt .
ds i ds

Let ¢ = ¢(x,y) Dbe twice continuousgly differventiable, We denote by ) the

derivative of ¢ along 0 that is,

() nis))
O B kRt
" RE

We denote by ¢ and -“ the directional derivatives of ¢ alonga n amd tp  that ais,




sSimilarly,

s £

Then, on 3.,

(L (8) ,n(s))

Figure 2.1: The curve
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I LR
. Convexity of the Free Boundary
The basic idea i1s to consider the function
Uey«-=vyae, t3.} -

where u 18 the solution of the Dam Problem. We beqgin by obtaining estimates for U,

u, and their derivatives, all of which are harmonic functio

The solution u can be reflected by symmetry across BC  (Courant and Hilbert
{1962, p. 272]) so that u 1is infinitely differentiable near BC. 1t thus follows
from the basic regularity theory for elliptic equations (Gilbarg and Trudingey (1977,
Section 6.4]) that u is twice continuouzly differentiable on 1 except possibly at
the points 2 = A, B, " D, and Wy E. 1In this section, statements about the values
of the derivatives of u and U on 3 should be understocd to exclude the points

A, D, and E,

Using (1.2) through (1.7) direct computation yields:

)
On EA: e ™ WUX)/TL + e (x))T 0
o *w X)) * et ix))Yt) >0, (3.2}
0" lgrad U|* = 179 .
N 5
On ABCD: \ly = Q, Q = jgrad U * 174 {3<«3)
On DE: u =1, Q" = |[grad U(* > 1/4 . (3.4)

v

The fact that Q 1is constant on ' means that in porous flow Q plavs a role
which 1s similar to that played by the velocity G in fluid dvnamics.
Since it was assumed ((1.14)) that n\_ 18 bounded, we may apply the Generalized

Maximum Principle to uy and obtain

Now consider u. Since u ¢ C(¥) the Maximum Prainciple impl

its extrema on 3!, but, by the Hopf Principle, these extrema cannot be attained on
BC Dbecause Ju/dn = 0 there. It has been assumed that ' i monotonically decreasing,

80 that h < u < H on TI'. It follows that h «~ u <« H on CDEAR and so

h<ag<h in k. (3:.6)

Y
B




Next, we consider ux. By the Hopf Principle applied to u on AB and CD we

See that

0O on AB U CD , {3:7)

where we have used the fact that u can be reflected acress  BC. The boundary conditions

for u together with (3.6) umply that the harmonic functien u - Y 1S non-negative

on 1. But u -y =0 on DE and hence, by the Hopf Principle,

T

v <0, on DB . (3.8)
X

On BC we have uy = 0; noting (3.5), the Hopf principle implies that (uy)' > 0.

That 1is,

iy e A D,
|

But u 1s smooth on BC, ux(B) < 0, and ux(C) <0 Thus,

g <0, on BC . (3.9)

R
x

The functions u and -uy are harmonic conjuagates in O and uy is bounded.

LA

¥ Applying Lemma 2.1 and noting (3.2) as well as (3.7) through (3.10), we conclude that

&

3’ U mage & 00 Wiy @ . (3.10)
X x —

:

L

Thus, u_ < @
X

in 4 since otherwise the strong maximum principle (Courant and Hilbert

(1962, p. 326]) implies that u C in Q, which is not possible. Hence

y

5
jgrad ul® > uf 3 0 ih @ . {3.11)

| v

7z

Remark 3.1

U decreases monotonically on ABC and increases monotonically on CDE. The fact

.
that |grada v]® > 0 ta 8 is also & consequence of a result of Walsh [1950, p. 318,

last paragraph] on the critical points of harmonic functions.

Since U‘ < 0 in Q the function

1 . o |
en(-U_ + iU ) = = ¢nu’ + U°] + i arc tan(-U /U ) , (3.12)
X y 2 X '3 v X

is reqular in 2 and has bounded imaginary part in . From lemma 2.1 and (3.2)

throuagh (3.4) we conclude that

Tt e e T ) S




‘.mwevwww‘m P . m -"5"\- o

Finally, since n (' 1is harmonic in ) and ( attains its minimum on [, the Hopf

Principle implies that

2 n Q = L <0, on T

.14
n 0 an . (3 )

We now use Lemma 2.2 to express 03Q/0n in terms of the boundary data for u

on [ and the curvature « of T. Direct computation shows that, on T,

U= n/2; U= U, = n/2 s
L % 21 %ﬁ % % £ %5 =+ &2,
Upp = Uge * KU = 7/2 + «€/2 = «E |
Unt = Uns = KU_ = E/2 = Kﬁ/Z = -KB ’
Unn = —Utt = -Ké

Thus, since Q2 = Ui £ Ui A

! = + 9 U
i QQn UnUnn t nt

-xE%/2 - «n’/2
= -x/2 . (3.15)

Together, (3.14) and (3.15) show that «k > 0 so that I 1is convex.

-10-
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Appendix: Remarks on the Seneralized Maximum Principle

It 18 natural to try to weaken the assumptions of Lemma 2.1 because this would

simplify applications to free boundary problems. For example, in this paper the

assumption that Uy 1s bounded (see (1.14)) was only needed so that Lemma 2.1 could

be applied. The proof that Uy is bounded (Friedman [1976]) is not straightforward,

and 1t would be nice 1f 1t could be avoided.

The requirement in Lemma 2.1 that v be bounded can be replaced by the weaker

condition that v(w(z)) € hz. but this is not a very convenient hypothesis to check.

Alternatively, one could reguire that u + iv € E)(Q) (Goluzin [1969, p. 438],
Priwalow (1956, p. 188]).
In applications we will usually know that
[f w?+ vHaxdy < = , (A.1)
Q
so that u and v both belong to the space L2H(Q) which consists (Hille [1962,
p. 325)) of functions ¢ which are harmonic in §! and satisfy
2 ’
JI ¢%axdy < . (A.2)
Q
It is tempting to conjecture that if u,v € LG(w) then u,v ¢ h_ , but this
is not true as the following example shows. Let & = D, so that ¢ = z. Set
u(z) + iv(z) = [ 2"/ . (A1)
n=1
Expanding u and v 1n Fourier series and using the orthogonality relations of
sin n8 and cos nd we see that
** 3 - 2 v ’n
[ wie,0d8 = [ vi@,0a0 = § "/ . (A.4)
0 0 n=1
Thus u,v € LZH(D) but u,v ¢ h?. Furthermore, usina a result given by Titchmarsh
[1939, p. 163, Problem 15], we see that
* -1/2
i0 . % 1,
f(2) = f(re ) = u % iv = s meon at , (AS)
4] L] - %
so that f(2) 1s continuous on D except at g2 = |.

-11-




Gehring [1957] (see also Tsuji [1959, p. 186])

and Littlewood to prove that it u € LoH(D) then, for almost all ¢,

u{z) = o(fl - lzl)-\/z) as z s e in any fixed Stolz domain with vertex

Unfortunately, this result is not quite strong enough to prove that u i«

even if we assume that u is bounded on 34 except at 2z = 1.

D onto the right half plane we could conclude that a harmonic function on

uses the maximal theorem of Hardy

bounded ,

Otherwise, by mapping

the right

half plane which has bounded limits on the imaginary axis, and bounded growth near

the real axis, must be bounded. This would constitute a substantial
of the Phraqmen-Lindele Principle (Protter and Weinberger [1967, p. 94)).

In conclusion, we observe that the behaviour of solutions of elliptic

near corners has been considered by Oddson [1968), Kondrat'ev [1967], Miller

1971] and Grisvard (1969]. These results are not immediately applicable to

strenqgthening

equations
1967,

the

present problem because they require knowledge of the behaviour of the free boundary

near its endpoints. Of course, once it is known that T

endpoints then this work will yield useful information about the behaviour

solution can be obtained.

is differentiable at its

of the

2ok
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